

High purity germanium (HPGe) detector R&D for applications from Particle Physics to Nuclear Safeguards

DR. JAMES FAST

Pacific Northwest National Laboratory
U. Nagoya Colloquium

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Introduction

- PNNL Overview
- ▶ Three HPGe Detector System Examples
 - MARS (Multi-sensor Airborne Radiation System)
 - High efficiency, rugged, thermally efficient
 - RN LABS (Radionuclide Laboratory System)
 - High efficiency, ultra-low background
 - UHRGe (Ultra-high rate Germanium)
 - High resolution gamma spectroscopy at >1Mcps
- Summary

PNNL Quick Facts

- DOE Office of Science laboratory
- ► ~4,700 staff
- Business volume ~\$1B/year
- Key facilities
 - Environmental & Molecular Science Laboratory, a Department of Energy national scientific user facility
 - Sequim Marine Sciences Laboratory
 - Applied Process Engineering Laboratory—a research, development, and demonstration user facility and technology business incubator
 - Radiochemical Processing Laboratory for nuclear science and engineering
 - Biological Sciences Facility and Computational Sciences Facility
 - Physical Sciences Facility 5 building complex including underground lab

PNNL's presence in Washington

PNNL Business Areas

Why the focus on High Purity Germanium (HPGe) detectors at PNNL?

PNNLs HPGe Legacy

- Unique HPGe detectors developed from the 1960's for gamma assay
- Pioneers in low-background counting for environmental radioisotopes
 - Fate and transport of isotopes in the environment
 - Understanding radiation on the moon (assay of moon rocks)
 - Treaty Verification
 - Nuclear Forensics
- Dark Matter searches dating back >25 years
 - Strong synergy with security and environmental science technologies
- Applications outside the laboratory
 - Airborne systems for emergency response and other applications
 - High rate systems for nuclear safeguards

HPGe is the "gold standard" for gamma-ray spectroscopy

Proudly Operated by Battelle Since 1965

Resolution and Why it Matters

Comparison of Different Resolution
Gamma Ray Spectrometers:
•PVT (used in most portal monitors)
• Nal (used in most backpacks)
•HPGe (used in gamma spectroscopy labs)

Resolution = Isotopic Identification
Isotopic Identification = Actionable Information

Simulation

Multi-sensor Airborne Radiation System Work sponsored by DOE/NNSA Office of Defense Nuclear Nonproliferation R&D (DNN R&D)

MARS Development Cycles

What is MARS?

A high resolution gamma ray spectrometer large enough for stand-off applications and ruggedized for use on a variety of mobile platforms

- MARS R&D
 - Multi-sensor Airborne Radiation Survey R&D
 - DOE DNN R&D project FY2006-2008
 - Initial technology research and development
- MARS Flight
 - Multi-Sensor Airborne Radiological System Flight
 - DOE DNN R&D project FY2008-2011
 - Development of technology into rugged field system
- Demonstrations
 - Demonstration in a maritime environment in FY10-11
 - Demonstrated for aerial search/survey in FY12

MARS R&D Project: Advancing the State of the Art

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Where we were: System of commercial detectors

- Too large; not integrated
- Limited mission time (4 hrs)
- Heavy system: ~700 kg
- One-off, fixed configuration
- Limited real-time analysis

Where we arrived: Well integrated monolithic array

- Integrated system-in-a-pod
- Increased mission time (2+ days)
- HPGe module ~25 kg (10kg HPGe) enables much lighter system
- Modular system-of-systems with multi-platform capability
- Real-time actionable data analysis

~1987 ERSS System

Filling the gap requires:

- Improved thermal, mechanical, and electronic engineering
- Applying lessons from previous PNNL HPGe projects

2010 MARS System

HPGe Detectors and Detector Mounting

- ► PNNL designs start from bare HPGe diodes
- Control materials for low background applications
- Control electro-mechanical design for low microphonics

Proudly Operated by Battelle Since 1965

MARS Flight Detector System

- It is an array of 14 high resolution gamma ray spectrometers, each larger than that used in commercial handheld instruments, for high quality, actionable, isotopic identification in the field
- Close-packed array improves detection efficiency by 30-50%
- This is the first successful closepacked array HPGe system ever built

HPGe detector

1 of 2 spools, each with 7-detectors

detectors in cryostat

System in enclosure

Cryostat mounted

Cross country journey to field demonstration

- MARS was transported from Richland, WA to Newport, RI and on to Charleston, SC in a 22 ft Penske truck to participate in Maritime demonstration activities
- During transit the system was operated off of a large UPS
- Data were collected in several states at ~60-65 mph

Detector performance was similar to static measurements

Dominant spectral features include the 1460 keV line from K-40. Features from the U-238 and Th-232 chains include the 239, 352, 511, 583, 609, 911, 969, 1120, 1239, 1764 and 2614 keV lines.

MARS Field Test data - 10 hour

Pacific Northwest
NATIONAL LABORATORY

► ~7 MeV dynamic range

~3 keV energy resolution

O Standby Lalibrate Start DAQ Settings

MARS Operator Interface
File Alarms Chart Notification Help

Rich spectrum from U/Th decays

MARS System on watercraft

Pacific Northwest NATIONAL LABORATORY

MARS Maritime Demonstration

Proudly Operated by Battelle Since 1965

 Successfully operated on three boats with similar system architecture

USV data, communications

MARS w/o Radome

MARS on Local Platform

Deployable Control Station

MARS Technical Demonstration with US Armed Forces and Coast Guard operators

MARS Reconfigured for Flight

- MARS HPGe array modified for installation in Bell 412 helicopter
- Flew 5 test flights from June 15-20, 2012
 - Initial checkout flight
 - Altitude spiral
 - Area 3 survey
 - Point source flyovers
 - Government Wash survey
- Simultaneous data taken with RSI NaI(TI) system (3 logs)

Sample Spectrum from Test Flight

Source Flights: Alarming > 3.3σ

Proudly Operated by Battelle Since 1965

Performance Summary

- No problems from vibration
- UPS adequate to bridge gaps in power from ground to APU to aircraft
- GPS and radar altimeter successfully integrated into data stream
- Heat was tolerated but the electronics crate did warn on over temperature
- Very small shifts in gain and resolution before and after flights appear to be due to temperature (~1 keV shift in gain, 0.4 keV increase in FWHM)
- Liquid nitrogen supply sufficient for two back-to-back 2.5 hour flights without need to refill (helicopter was refueled twice)
- Second-by-second monitoring with 5 second window was sufficient to alarm on sources

Radio-Nuclide Labs / CASCADES Work sponsored by DOE/NNSA/NA-22 Ground-based Nuclear Explosion Monitoring R&D (GNEM)

PI: Martin Keillor

Pacific Northwest NATIONAL LABORATORY

Project Goals

- Project funded by DOE GNEM R&D
 - Ground-based nuclear explosion monitoring
- Build a high-efficiency, ultra-lowbackground HPGe array that can:
 - Provide high sensitivity laboratorybased capability to detect fission products
 - Produce useful results for very low activity samples
- Develop automated analysis routines
- Demonstrate system capabilities

RN Labs / CASCADES

- High Efficiency
- High Selectivity
- Ultra-Low Background

- Atmospheric filter paper assay
- Resolve anomalous results seen in field measurement or normal laboratory assay
- Low level environmental samples
- Physics measurements
- Potential application to International Monitoring System samples

The HPGe Array and Shield System

Proudly Operated by Battelle Since 1965

2nd cryostat in cryogenic testing (sans crystals)

8" Pb shield

2" BC408 scintillator active anti-Cosmic

Operating 7 crystal array

Radon exclusion

Ultra-low background detectors require special materials

Proudly Operated by Battelle Since 1965

Electroforming ultra-high purity copper in a variety of shapes and sizes

Ultra-low background detectors must be shielded from cosmic radiation

Virtual Tour of Underground Lab: http://tour.pnnl.gov/shallow-lab.html

High Efficiency from Array Geometry

- Increasing efficiency provides most direct sensitivity enhancement
- Crucial for γ-γ
 coincidence due to
 product of two
 efficiency factors
- Significant gain by summing multiplecrystal interactions (event reconstruction)

MCNP5 Simulated HPGe Crystal Array Efficiencies (single γ)

High Selectivity from Coincidence Counting

Proudly Operated by Battelle Since 1965

- Energy resolution of HPGe provides excellent selectivity
- γ-γ coincidence further enhances selectivity
 - Targets unique signatures
 - Can resolve interferences found in "singles" spectroscopy
 - Provides substantial background reduction for appropriate isotopes
- Targets measurement with little or no sample prep

⁹⁹Mo Gamma-Gamma Signal Example

(235U irradiation, all mixed fission products, 1e8 fissions, age=5days, 24 hour count, GEANT4 Monte Carlo data)

Electroformed Copper Cryostat Parts

Pacific Northwest NATIONAL LABORATORY

Installation of Wiring, Front-End Electronics

Installing HPGe and hand-wiring electrical connections - no commercial connectors!

CASCADES 14 HPGe Crystal Gamma Spectrometer

- Automated analysis tools under development
- Using C++, ROOT, Coincidence Lookup Library (CLL)
- ► First step was developing cascade sum correction framework for 2-D histograms [NIM A 560 (2006) 360–365]

15 day background run, 7 crystals

Background Comparison

Proudly Operated by Battelle Since 1965

Path to further reduced background

Evidence of ²¹⁰Pb associated bremsstrahlung

- Complete radon exclusion
- Complete, optimize active anticosmic system
 - Possible loss of overflow events in PVT
 - Coincidence timing may not be optimum
- Verify, eliminate source of continuum
 - Pb-210 related bremsstrahlung
 - Solution: inner lining with copper or better lead
 - Possible cosmic related bremsstrahlung
 - Reduce shield thickness.

Status of array background after improvements implemented

Development of supporting analysis

"Singles" and coincidence spectra from thermal irradiation of ²³⁵U

Energy calibration panel

Isotope ID

CASCADES Summary

- 14 Crystal Array
- Low Background Construction
- Active anti-cosmic shield
- Radon exclusion system
- Operates in PNNL Shallow Underground Lab
- XIA Pixie-4 Digitizers

▶ 72 hour MDA

- 40K ~ 40 mBq
- 60Co ~ 4 mBq
- ¹³⁷Cs ~ 2 mBq
- ²²⁸Ac ~ 20 mBq
- Sample Geometry
 - < 4.3 cm thick
 - < ~15 cm diameter</p>
 - Larger diameter can be measured, but detection efficiency is poor outside of 15 cm

NDA of Spent Fuel Ultra-High-Rate Germanium (UHRGe) Work sponsored by DOE/NNSA Office of Defense Nuclear Nonproliferation R&D (DNN R&D)

The Spent Nuclear Fuel Concern

- One spent fuel assembly can contain about ½ of IAEA "concerning" amount of plutonium.¹
- Want to non-destructively determine spent fuel properties to confirm operator declarations or prepare for final disposition.

¹Y. Abushady, "Can light water reactors be proliferation resistant?" IAEA-SM-367/15/08

NDA Assay Challenge

- Assay spent nuclear fuel noninvasively with high-rate, high-purity germanium (HPGe) data
 - Signatures of gamma spectrum are significantly muted in spent fuel with long cool-down times (>20 years)
 - Here, HPGe detectors, which have good energy resolution, are modified to function at high event rates (in excess of 10⁶ events/s)²
- ► The Cs-134:Cs-137 ratio is used to determine fuel history (i.e., burnup and cooling time)³

Cooling time (yrs)	Cs-134:Cs-137
0	1.0
5	2.1×10^{-1}
10	4.4×10^{-2}
20	1.9×10^{-3}
30	8.4×10^{-5}

² B. A. VanDevender, *et. al.*, "High-Purity Germanium Spectroscopy at Rates in Excess of 10⁶ Events/s," *IEEE Transactions on Nuclear Science*, 2014.

³ G. Kirchner, et. al., "Radioactivity from Fukushima Dai-ichi in air over Europe; part 2," *Journal of Environmental Radioactivity*, vol. 114, pp. 35-40, 2012.

Extracting weak signatures at long cooling times

- At long cooling times, the activity from Cs-134 is quite low compared to the background (dominated by Cs-137)
- High-rate detector response (pileup!) doesn't help

Measurement time dictated by operators

For compatibility with facility operations, measurements on spent fuel will likely have to be completed on the order of minutes,⁴ requiring high-count rates (>10⁶ counts/s) and good energy resolution

Measurements on SNF rod segment

- ATM-109 is high burnup BWR fuel from Quad Cities I
 - 60-70 GWd/tU, irradiated 1979-87 and 1989-92
 - 58 grams (~55 cm) rod segment with cladding
- Ultra high-rate germanium (UHRGe) system used to measure fuel
 - Fuel viewed through open port in back of hot cell
 - Input count rates up to 1.4 Mcps
 - 180 second exposures recorded

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Collecting high statistics with fuel slice

- ATM-109 is high burnup BWR fuel from Quad Cities I
 - <60 GWd/tU, irradiated 1979-87 and 1989-92</p>
 - 0.5 g rod segment (~0.5 mm) with cladding
- ▶ A modified version of the PHDS, Co. germanium gamma imager (GeGI)⁵ was used for a long, 2-week count with a smaller section of ATM-109
 - Segmented germanium with 32 channels
 - 10 cm diameter, 1 cm thickness

HPGe detector

Spent fuel rod segment

Selection of detector system

- Data from the PNNL-developed ultra-high-rate germanium (UHRGe) detector system is used here due to the unique, direct access to the preamp output, even at high-rates
 - Can modify slow and fast filter parameters
 - Can modify pileup rejection methods
 - Can answer not just what, but why

Detector response – a trapezoidal filter

- ► Fast filter response, ℓ
- ► Slow filter rise time *L* and gap *G*
- Preamp decay constant τ

Detector response – very high-rate

Pileup possibilities

(a) Pileup reject

Results

- Filtering out events that occur within the slow filter rise time and gap (L+G) removes much of the pileup.
 - However...

Peak shape curve fitting

- There is still a significant tail on the peak
- A Gaussian clearly does not capture the peak shape
 - It underestimates the peak area by about 25%

Peak shape curve fitting

- A Gaussian plus an exponential fits the peak shape well
 - Consistent shaping at a number of rates and inspected objects

Exponential decay constant vs. rate

- As expected, the tail on the high-energy side of the photopeak is longer at higher rates
 - An indication that increased rate is linked to increased pileup

High-rate germanium data uncertainties

Relevance to particle physics

- COMET and mu2e experiments seek to measure muon to electron conversion in the presence of a nucleus (lepton flavor violation)
- ► This is an extremely rare process seek sensitivities of 10⁻¹⁸
- Experiments stop muons in a target and look for the distinct electron emitted in the process with a spectrometer
- But what if they see signals?
 - Then the "denominator", the number of stopped muons becomes critical
 - When muons capture they do so in excited states and emit characteristic muonic x-rays as they de-excite to the ground state
 - These x-rays are in the 300-1500 keV range, but terrestrial backgrounds are an issue for detectors with poor energy resolution HPGe?
 - Rates are extreme due to bremsstrahlung flash with each beam pulse and comes too close in time to clear from detector before delayed muon x-ray signal arrives
 - Precisely the "rare signal in high rate environment" scenario UHRGe was designed to tackle!

Next steps for UHRGe

- Artifacts at high event rates cannot be completely removed
 - However, analysis algorithms can work around this
- Reduction in systematic uncertainties leaves only statistical uncertainties, which can be reduced with longer count times (useful for facility operations)
- The next generation system will utilize segmented, strip detectors⁶
 - Events are split across multiple channels → faster response
 - Thinner detectors mean faster charge collection → faster response

⁶ R. J. Cooper, et. al., "A prototype High Purity Germanium detector for high resolution gammaray spectroscopy at high count rates," NIMA, 2015.

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Summary

- In the last 10 years, PNNL has extended work HPGe in three areas
 - Use of arrays of detector elements to greatly increase detection efficiency and acceptance
 - Extended ultra-low-background techniques to create a one-of-a-kind large acceptance coincidence counting system
 - Pushing rate capability of HPGe an order of magnitude further than prior efforts to operate at high rates
- Most of this development has been driven by nuclear security and nuclear treaty requirements
- Technology from this work has made its way back to basic science, e.g.
 the Majorana ⁷⁶Ge 0ν ββ-decay search and dark matter efforts (CoGeNT)
 strong connection to dark matter and neutrino physics
- Increasingly, both nuclear security and physics applications drive detector R&D at PNNL